M1.(a) (i) **2**Cl⁻
$$\longrightarrow$$
 Cl₂ + **2**e⁻

Ignore state symbols Credit loss of electrons from LHS Credit multiples Do not penalise absence of charge on electron

1

1

1

1

1

1

- (ii) +7 **OR** 7 **OR** \vee II **OR** + \vee II Allow Mn^{+7} and 7+
- (iii) MnO₄⁻ + 8H⁺ + 5e⁻ Mn²⁺ + 4H₂O

 Ignore state symbols

 Credit loss of electrons from RHS

 Credit multiples

 Do not penalise absence of charge on electron

(b) (i)
$$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2$$

OR

$$\frac{1}{2}Cl_1 + Br^- \longrightarrow Cl^- + \frac{1}{2}Br_1$$

One of these two equations <u>only</u> Ignore state symbols

- (ii) (Turns to) <u>yellow / orange / brown</u> (solution)

 Penalise "red / reddish" as the only colour

 Accept "red-brown" and "red-orange"

 Ignore "liquid"

 Penalise reference to a product that is a gas or a precipitate
- (iii) (Chlorine) gains electron(s) / takes electron(s) / accepts electron(s) (from the bromide ions)

OR

(Chlorine) <u>causes another species</u> (Br⁻) <u>to lose electron</u>(s)

Penalise "electron pair acceptor"

Not simply "causes loss of electrons"

Page 2

(c) M1 2Cl₂ + 2H₂O
$$\longrightarrow$$
 4HCl + O₂ (4H⁺ + 4Cl⁻)

M2 Oxidation state −1

Ignore state symbols

Credit multiples

M2 consequential on HCl or CΓ which **must** be the only chlorine-containing product in the (un)balanced equation.

For **M2** allow Cl⁻¹ or Cl¹⁻ but **not** Cl⁻¹

2

(d) M1 The relative size (of the molecules / atoms)

Chlorine is <u>smaller</u> than bromine *OR* has fewer electrons / electron shells For *M1* ignore whether it refers to molecules or atoms.

OR It is smaller / It has a smaller atomic radius / it is a smaller molecule / atom (or converse)

CE=0 for the clip for reference to (halide) ions or incorrect statements about relative size Ignore molecular mass and M_r

M2 How size of the intermolecular force affects energy needed

Ignore shielding

The <u>forces between</u> chlorine / Cl_2 <u>molecules</u> are weak<u>er</u> (than the forces between bromine / Br_2 <u>molecules</u>)

(or converse for bromine)

OR chlorine / Cl₂ has <u>weaker / fewer / less</u> (VdW) <u>intermolecular forces / forces between molecules</u>

(or converse for bromine)

QoL in M2 for clear reference to the difference in size of the force between molecules. Reference to Van der Waals forces alone is not enough.

Penalise M2 if (covalent) bonds are broken

[10]

M2.(a) moles of
$$Cr_2O_7^{2-}$$
 per titration = 21.3 × 0.0150 / 1000 = 3.195×10^{-4}

1

$$(Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}) Cr_2O_7^{2-}:Fe^{2+} = 1:6$$
If 1:6 ratio incorrect cannot score M2 or M3

1

moles of Fe²⁺ =
$$6 \times 3.195 \times 10^{-4} = 1.917 \times 10^{-3}$$

Process mark for M1 × 6 (also score M2)

1

original moles in 250 cm³ = $1.917 \times 10^{-3} \times 10 = 1.917 \times 10^{-2}$ *Process mark for M3* × 10

1

mass of FeSO₄.7H₂O = $1.917 \times 10^{-2} \times 277.9 = 5.33$ (g) Mark for answer to M4 × 277.9

(allow 5.30 to 5.40)

Answer **must** be to at least 3 sig figs
Note that an answer of 0.888 scores M1, M4 and M5 (ratio 1:1 used)

1

(b) (Impurity is a) reducing agent / reacts with dichromate / impurity is a version of FeSO₄ with fewer than 7 waters (not fully hydrated)

Allow a reducing agent or compound that that converts Fe³⁺ into Fe²⁺

1

Such that for a given mass, the impurity would react with more dichromate than a similar mass of FeSO₄.7H₂O

OR for equal masses of the impurity and FeSO₄.7H₂O , the impurity would react with more dichromate.

Must compare mass of impurity with mass of FeSO₄.7H₂O

1

[7]

M3.(a) **M1** (could be scored by a correct mathematical expression)

M1 $\Delta H = \sum \Delta H_f$ (products) $-\sum \Delta H_f$ (reactants)

OR a correct cycle of balanced equations

M2 =
$$5(-635) - (-1560)$$

$$= -3175 + 1560$$

(This also scores M1)

M3 = - 1615 (kJ mol⁻¹) Award 1 mark ONLY for (+) 1615

> Correct answer to the calculation gains all of M1, M2 and M3 Credit 1 mark for(+) 1615 (kJ mol⁻¹)

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with V₂O₅ and 5CaO OR a clear statement of M1 which could be in words and scores only M1

M4 Type of reaction is

- reduction
- redox
- (or accept) V_2O_5 / it / V(V) has been reduced In M4 not "vanadium / V is reduced"

Major reason for expense of extraction - the answer must be **M5** about calcium

Calcium is produced / extracted by electrolysis

OR calcium is expensive to extract

OR calcium extraction uses electricity

OR calcium extraction uses large amount of energy

OR calcium is a (very) reactive metal / reacts with water or air

OR calcium needs to be extracted / does not occur native

QoL

Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc.

In **M5** it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"

5

(b) **M1**

$$2AI + Fe2O3 \longrightarrow 2Fe + AI2O3$$

Ignore state symbols

Credit multiples of the equation

M2

(Change in oxidation state) 0 to (+)3

OR

(changed by) +3

In M2 if an explanation is given it must be correct and unambiguous

Page 5

(c) M1

$$VCI_2 + H_2 \longrightarrow V + 2HCI$$

In M1 credit multiples of the equation

M2 and M3

Two hazards in either order

- HCI / hydrogen chloride / hydrochloric acid is acidic / corrosive / toxic / poisonous
- Explosion risk with hydrogen (gas) OR H₂ is flammable
 For M2 / M3 there must be reference to hydrogen; it is not
 enough to refer simply to an explosion risk
 For M2 / M3 with HCl hazard, require reference to acid(ic) /
 corrosive / toxic only

M4

The only other product / the HCl is easily / readily removed / lost / separated because it is a gas OR will escape (or this idea strongly implied) as a gas OR vanadium / it is the only solid product (and is easily separated)
OR vanadium / it is a solid and the other product / HCl is a gas

In **M4** it is not enough to state simply that HCl is a gas, since this is in the question.

[11]

1

M4.(a) (i) **3**Fe + Sb₂S₃
$$\longrightarrow$$
 3FeS + **2**Sb Or multiples. Ignore state symbols.

(ii) Fe \longrightarrow Fe²⁺ + 2e⁻

Ignore charge on the electron unless incorrect. Or multiples.

Credit the electrons being subtracted on the LHS. Ignore state symbols.

(b) (i) $Sb_2S_3 + 4.5O_2 \longrightarrow Sb_2O_3 + 3SO_2$ Or multiples. Ignore state symbols.

1

1

(ii) SO₃ or sulfur trioxide / sulfur (VI) oxide Credit also the following ONLY.

*H*₂SO₄ or sulfuric acid.

OR

Gypsum / CaSO₄ or plaster of Paris.

1

(c) (i) M1 (could be scored by a correct mathematical expression)

Correct answer gains full marks.

M1 $\Delta H_t = \Sigma \Delta H_t (products) - \Sigma \Delta H_t (reactants)$

OR a <u>correct cycle of balanced equations / correct numbers of moles</u>

Credit 1 mark for +104 (kJ mol⁻¹).

M2 =
$$2(+20) + 3(-394) - (-705) - 3(-111)$$

= $40 - 1182 + 705 + 333$
= $-1142 - (-1038)$

(This also scores M1)

M3 = -104 (kJ mol⁻¹)

(Award 1 mark ONLY for + 104)

For other incorrect or incomplete answers, proceed as follows:

- Check for an arithmetic error (AE), which is either
 a transposition error or an incorrect multiplication; this
 would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with 3CO, 2Sb and 3CO₂ OR a clear statement of **M1** which could be in words and scores **only M1**.

3

(ii) It / Sb is not in its standard state

OR

Standard state (for Sb) is solid / (s)

OR

(Sb) liquid is not its standard state

Credit a correct definition of standard state as an alternative to the words 'standard state'.

QoL

(iii) Reduction OR reduced OR redox

1

1

- (d) Low-grade ore extraction / it
 - uses (cheap) scrap / waste iron / steel
 - is a single-step process

uses / requires less / low(er) energy

Ignore references to temperature / heat or labour or technology.

[10]

1

M5.D

[1]

M6.D

[1]

M7.B

[1]

M8.(a) $Cl_2 + H_2O = HOCI + HCI$

Allow the products shown as ions.

1

	Cl ₂ = 0, HOCl = +1 and HCl = -1 1 mark for all three oxidation states correct. Allow a reaction arrow in this equation. Oxidation states must match the species	1	
(b)	Hydroxide / alkali ions react with the acids Mark independently Equilibrium moves to the right	1	
(c)	Only used in small amounts The health benefits outweigh the risks	1	[6]
M9. C M10. D			[1]