M1.(a) (i) $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
Ignore state symbols
Credit loss of electrons from LHS
Credit multiples
Do not penalise absence of charge on electron
(ii) $\quad+7$ OR 7 OR VII OR + VII

Allow $\mathrm{Mn}^{+7}$ and 7+
(b) (i) $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$

OR
$\frac{1}{2} \mathrm{Cl}_{2}+\mathrm{Br}^{-} \longrightarrow \mathrm{Cl}^{-}+\frac{1}{2} \mathrm{Br}_{2}$
One of these two equations only Ignore state symbols
(ii) (Turns to) yellow / orange / brown (solution)

Penalise "red / reddish" as the only colour
Accept "red-brown" and "red-orange"
Ignore "liquid"
Penalise reference to a product that is a gas or a precipitate
(iii) (Chlorine) gains electron(s) / takes electron(s) / accepts electron(s) (from the bromide ions)

OR
(Chlorine) causes another species ( $\mathrm{Br}^{-}$) to lose electron(s)
Penalise "electron pair acceptor"
Not simply "causes loss of electrons"
(c) M1 $2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{HCl}+\mathrm{O}_{2}$

$$
\left(4 \mathrm{H}^{+}+4 \mathrm{Cl}^{-}\right)
$$

M2 Oxidation state -1
Ignore state symbols
Credit multiples
M2 consequential on HCl or $\mathrm{Cl}^{-}$which must be the only chlorine-containing product in the (un)balanced equation. For M2 allow $\mathrm{Cl}^{-1}$ or $\mathrm{Cl}^{1-}$ but not $\mathrm{Cl}^{-}$
(d) M1 The relative size (of the molecules / atoms)

Chlorine is smaller than bromine $\boldsymbol{O R}$ has fewer electrons / electron shells For M1 ignore whether it refers to molecules or atoms.

OR It is smaller / It has a smaller atomic radius / it is a smaller molecule / atom (or converse)

CE=0 for the clip for reference to (halide) ions or incorrect statements about relative size
Ignore molecular mass and $M_{r}$
M2 How size of the intermolecular force affects energy needed Ignore shielding

The forces between chlorine / $\mathrm{Cl}_{2}$ molecules are weaker (than the forces between bromine / $\mathrm{Br}_{2}$ molecules) (or converse for bromine)
OR chlorine / $\mathrm{Cl}_{2}$ has weaker / fewer / less (VdW) intermolecular forces / forces between molecules (or converse for bromine)

QoL in M2 for clear reference to the difference in size of the force between molecules. Reference to Van der Waals forces alone is not enough.
Penalise M2 if (covalent) bonds are broken

M2.(a) moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ per titration $=21.3 \times 0.0150 / 1000=\underline{3.195 \times 10^{-4}}$

$$
\begin{gathered}
\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}\right) \mathrm{Cr}_{2} \mathrm{O}_{7}^{2}: \mathrm{Fe}^{2+}=1: 6 \\
\text { If 1:6 ratio incorrect cannot score M2 or M3 }
\end{gathered}
$$

moles of $\mathrm{Fe}^{2+}=6 \times 3.195 \times 10^{-4}=1.917 \times 10^{-3}$
Process mark for M1 $\times 6$ (also score M2)
original moles in $250 \mathrm{~cm}^{3}=1.917 \times 10^{-3} \times 10=1.917 \times 10^{-2}$
Process mark for M3 $\times 10$
mass of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=1.917 \times 10^{-2} \times 277.9=5.33(\mathrm{~g})$
Mark for answer to $M 4 \times 277.9$
(allow 5.30 to 5.40 )
Answer must be to at least 3 sig figs
Note that an answer of 0.888 scores M1, M4 and M5 (ratio 1:1 used)
(b) (Impurity is a) reducing agent / reacts with dichromate / impurity is a version of $\mathrm{FeSO}_{4}$ with fewer than 7 waters (not fully hydrated)

Allow a reducing agent or compound that that converts $\mathrm{Fe}^{3+}$ into $\mathrm{Fe}^{2+}$

Such that for a given mass, the impurity would react with more dichromate than a similar mass of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

OR for equal masses of the impurity and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, the impurity would react with more dichromate.

Must compare mass of impurity with mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

M3.(a) M1 (could be scored by a correct mathematical expression)
M1 $\Delta H=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta H_{f}$ (reactants)
OR a correct cycle of balanced equations
M2 $\quad=5(-635)-(-1560)$

$$
=-3175+1560
$$

(This also scores M1)
M3 $\quad=\mathbf{- 1 6 1 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Award 1 mark ONLY for (+) 1615
Correct answer to the calculation gains all of M1, M2 and M3
Credit 1 mark for(+) 1615 ( $\mathrm{kJ} \mathrm{mol}^{-1}$ )
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $\mathrm{V}_{2} \mathrm{O}_{5}$ and 5 CaO OR a clear statement of M1 which could be in words and scores only M1

M4 Type of reaction is

- reduction
- redox
- (or accept) $\underline{\mathrm{V}}_{2} \underline{\mathrm{O}}_{5} /$ it / $\mathrm{V}(\mathrm{V})$ has been reduced In M4 not "vanadium / V is reduced"

M5 Major reason for expense of extraction - the answer must be about calcium

Calcium is produced / extracted by electrolysis
OR calcium is expensive to extract
OR calcium extraction uses electricity
OR calcium extraction uses large amount of energy
OR calcium is a (very) reactive metal / reacts with water or air
OR calcium needs to be extracted / does not occur native QoL
Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc.
In M5 it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"
(b) M1
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Ignore state symbols
Credit multiples of the equation
M2
(Change in oxidation state) $\mathbf{0}$ to (+)3
OR
(changed by) $\underline{\mathbf{3}}$
In M2 if an explanation is given it must be correct and unambiguous
(c) M1
$\mathrm{VCl}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{~V}+2 \mathrm{HCl}$
In M1 credit multiples of the equation

## M2 and M3

Two hazards in either order

- $\quad \mathrm{HCl}$ / hydrogen chloride / hydrochloric acid is acidic / corrosive / toxic / poisonous
- Explosion risk with hydrogen (gas) $\mathrm{OR}_{\underline{H_{2}} \text { is flammable }}^{\underline{2}}$

For M2 / M3 there must be reference to hydrogen; it is not enough to refer simply to an explosion risk
For M2 / M3 with HCl hazard, require reference to acid(ic) / corrosive / toxic only

M4
The only other product / the HCl is easily / readily removed / lost / separated because it is a gas $O R$ will escape (or this idea strongly implied) as a gas OR vanadium / it is the only solid product (and is easily separated)
$O R$ vanadium / it is a solid and the other product / HCl is a gas
In M4 it is not enough to state simply that HCl is a gas, since this is in the question.

M4.(a) (i) $3 \mathrm{Fe}+\mathrm{Sb}_{2} \mathrm{~S}_{3} \longrightarrow 3 \mathrm{FeS}+2 \mathrm{Sb}$
Or multiples.
Ignore state symbols.
(ii) $\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$

Ignore charge on the electron unless incorrect.
Or multiples.
Credit the electrons being subtracted on the LHS.
Ignore state symbols.
(b) (i) $\mathrm{Sb}_{2} \mathrm{~S}_{3}+4.5 \mathrm{O}_{2} \longrightarrow \mathrm{Sb}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{2}$

Or multiples.
Ignore state symbols.
(ii) $\mathrm{SO}_{3}$ or sulfur trioxide / sulfur (VI) oxide

Credit also the following ONLY. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or sulfuric acid.
OR
Gypsum / $\mathrm{CaSO}_{4}$ or plaster of Paris.
(c) (i) M1 (could be scored by a correct mathematical expression) Correct answer gains full marks.

M1 $\quad \Delta H_{\mathrm{f}}=\Sigma \Delta H_{f}($ products $)-\Sigma \Delta H_{f}$ (reactants)
OR a correct cycle of balanced equations / correct numbers of moles Credit 1 mark for $+104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.

M2

$$
\begin{aligned}
& =2(+20)+3(-394)-(-705)-3(-111) \\
& =40-1182+705+333 \\
& =-1142-(-1038)
\end{aligned}
$$

(This also scores M1)
M3 $\quad=-104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Award 1 mark ONLY for + 104)
For other incorrect or incomplete answers, proceed as follows:

- Check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with 3CO, 2Sb and $3 \mathrm{CO}_{2} \mathrm{OR}$ a clear statement of M1 which could be in words and scores only M1.
(ii) It / Sb is not in its standard state

OR
Standard state (for Sb) is solid / (s)
OR
(Sb) liquid is not its standard state

Credit a correct definition of standard state as an alternative to the words 'standard state'.

## QoL

(iii) Reduction OR reduced OR redox
(d) Low-grade ore extraction / it

- uses (cheap) scrap / waste iron / steel
- is a single-step process
uses / requires less / low(er) energy
Ignore references to temperature / heat or labour or technology.

M5.D

M6.D

## M7.B

M8.(a) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HOCl}+\mathrm{HCl}$
Allow the products shown as ions.

$$
\begin{aligned}
& \mathrm{Cl}_{2}=0, \mathrm{HOCI}=+1 \text { and } \mathrm{HCl}=-1 \\
& \quad 1 \text { mark for all three oxidation states correct. Allow a reaction } \\
& \text { arrow in this equation. } \\
& \text { Oxidation states must match the species }
\end{aligned}
$$

(b) Hydroxide / alkali ions react with the acids

Mark independently

Equilibrium moves to the right
(c) Only used in small amounts

The health benefits outweigh the risks

